CORe(临床结果表示)模型在论文 Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration 中介绍。它基于BioBERT,并在临床笔记、疾病描述和医学文章上进行了进一步的预训练,采用了专门的临床结果预训练目标。
如何使用CORe您可以通过transformers库加载该模型:
from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("bvanaken/CORe-clinical-outcome-biobert-v1") model = AutoModel.from_pretrained("bvanaken/CORe-clinical-outcome-biobert-v1")
从那里,您可以在从患者结果知识中受益的临床任务上进行微调。
该模型基于 BioBERT 预训练的PubMed数据。临床结果预训练包括来自MIMIC III训练集的出院摘要(指定 here ),来自 MTSamples 的医学转录以及来自i2b2挑战2006-2012的临床笔记。它还包括来自PubMed Central(PMC)的大约10,000份病例报告,来自维基百科的疾病文章,以及从NIH网站提取的 MedQuAd 数据集的文章部分。
有关CORe的所有细节和联系信息,请访问 CORe.app.datexis.com 。
@inproceedings{vanaken21, author = {Betty van Aken and Jens-Michalis Papaioannou and Manuel Mayrdorfer and Klemens Budde and Felix A. Gers and Alexander Löser}, title = {Clinical Outcome Prediction from Admission Notes using Self-Supervised Knowledge Integration}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, {EACL} 2021, Online, April 19 - 23, 2021}, publisher = {Association for Computational Linguistics}, year = {2021}, }