在文献 Assertion Detection in Clinical Notes: Medical Language Models to the Rescue? 中引入了临床主张和否定分类BERT。该模型通过将病历中提到的医疗状况分类为存在、不存在和可能来帮助结构化临床患者病历中的信息。
该模型基于Alsentzer等人的文献 ClinicalBERT - Bio + Discharge Summary BERT Model ,并在文献 2010 i2b2 challenge 中的主张数据上进行了微调。
如何使用该模型您可以通过transformers库加载该模型:
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline tokenizer = AutoTokenizer.from_pretrained("bvanaken/clinical-assertion-negation-bert") model = AutoModelForSequenceClassification.from_pretrained("bvanaken/clinical-assertion-negation-bert")
该模型的输入应以带有一个标记实体的span/句子的形式给出,以进行存在(0)、不存在(1)或可能(2)的分类。所讨论的实体用特殊标记[entity]标记。
示例输入和推断:
input = "The patient recovered during the night and now denies any [entity] shortness of breath [entity]." classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer) classification = classifier(input) # [{'label': 'ABSENT', 'score': 0.9842607378959656}]
使用该模型时,请按照以下方式引用我们的论文:
@inproceedings{van-aken-2021-assertion, title = "Assertion Detection in Clinical Notes: Medical Language Models to the Rescue?", author = "van Aken, Betty and Trajanovska, Ivana and Siu, Amy and Mayrdorfer, Manuel and Budde, Klemens and Loeser, Alexander", booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.nlpmc-1.5", doi = "10.18653/v1/2021.nlpmc-1.5" }