模型:
cahya/bert2gpt-indonesian-summarization
通过使用BERT-base和GPT2-small对印度尼西亚文本进行微调的EncoderDecoder模型用于摘要。
bert2gpt-indonesian-summarization模型基于cahya/bert-base-indonesian-1.5G和cahya/gpt2-small-indonesian-522M,由 cahya 进行微调,使用 id_liputan6 数据集。
from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("cahya/bert2gpt-indonesian-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("cahya/bert2gpt-indonesian-summarization")
from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("cahya/bert2gpt-indonesian-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("cahya/bert2gpt-indonesian-summarization") # ARTICLE_TO_SUMMARIZE = "" # generate summary input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') summary_ids = model.generate(input_ids, min_length=20, max_length=80, num_beams=10, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True, do_sample = True, temperature = 0.8, top_k = 50, top_p = 0.95) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text)
输出: