模型:
cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR-large
语言:多语言
标签:
数据集:
[新闻] SapBERT的跨语言扩展将出现在ACL 2021的主要会议上![新闻] SapBERT将出现在NAACL 2021的会议论文中!
使用2020AB作为基础模型,SapBERT (Liu et al. 2021) 在 UMLS 上进行了训练。请使用[CLS]作为输入的表示形式。
从SapBERT提取嵌入以下脚本将一串字符串(实体名称)转换为嵌入。
import numpy as np import torch from tqdm.auto import tqdm from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext") model = AutoModel.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext").cuda() # replace with your own list of entity names all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"] bs = 128 # batch size during inference all_embs = [] for i in tqdm(np.arange(0, len(all_names), bs)): toks = tokenizer.batch_encode_plus(all_names[i:i+bs], padding="max_length", max_length=25, truncation=True, return_tensors="pt") toks_cuda = {} for k,v in toks.items(): toks_cuda[k] = v.cuda() cls_rep = model(**toks_cuda)[0][:,0,:] # use CLS representation as the embedding all_embs.append(cls_rep.cpu().detach().numpy()) all_embs = np.concatenate(all_embs, axis=0)
有关训练和评估的更多详细信息,请参阅SapBERT github repo 。
@inproceedings{liu2021learning, title={Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={Proceedings of ACL-IJCNLP 2021}, month = aug, year={2021} }