模型:
cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual
这个模型是在 cardiffnlp/tweet_sentiment_multilingual (all) 上通过 tweetnlp 进行微调的 bert-base-multilingual-cased 的版本。训练数据集的划分是 train,参数在验证数据集 validation 上进行了调优。
在测试数据集 test 上( link ),达到了以下指标:
通过pip安装tweetnlp。
pip install tweetnlp
在Python中加载该模型。
import tweetnlp model = tweetnlp.Classifier("cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}')
@inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" }