模型:

cardiffnlp/twitter-roberta-base-2019-90m

英文

Twitter 2021 90M (RoBERTa-base)

这是一个在截至2019年底之前的90M推文上训练的RoBERTa-base模型。更多详细信息和性能分数可 在 TimeLMs paper 中找到。

下面,我们使用标准的Transformers接口提供一些用法示例。要使用另一种更适合比较在不同时间间隔训练的模型的预测和困惑度分数的接口,请查看 TimeLMs repository

要查看训练到不同时间段的其他模型,请查看此 table

预处理文本

用占位符 "@user" 和 "http" 替换用户名和链接。如果您想保留在训练过程中也保留的已验证用户,请保留列在 here 中的用户。

def preprocess(text):
    preprocessed_text = []
    for t in text.split():
        if len(t) > 1:
            t = '@user' if t[0] == '@' and t.count('@') == 1 else t
            t = 'http' if t.startswith('http') else t
        preprocessed_text.append(t)
    return ' '.join(preprocessed_text)

示例遮罩语言模型

from transformers import pipeline, AutoTokenizer

MODEL = "cardiffnlp/twitter-roberta-base-2019-90m"
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)

def pprint(candidates, n):
    for i in range(n):
        token = tokenizer.decode(candidates[i]['token'])
        score = candidates[i]['score']
        print("%d) %.5f %s" % (i+1, score, token))

texts = [
    "So glad I'm <mask> vaccinated.",
    "I keep forgetting to bring a <mask>.",
    "Looking forward to watching <mask> Game tonight!",
]

for text in texts:
    t = preprocess(text)
    print(f"{'-'*30}\n{t}")
    candidates = fill_mask(t)
    pprint(candidates, 5)

输出:

------------------------------
So glad I'm <mask> vaccinated.
1) 0.28870  getting
2) 0.28611  not
3) 0.15485  fully
4) 0.07357  self
5) 0.01812  being
------------------------------
I keep forgetting to bring a <mask>.
1) 0.12194  book
2) 0.04396  pillow
3) 0.04202  bag
4) 0.03038  wallet
5) 0.02729  charger
------------------------------
Looking forward to watching <mask> Game tonight!
1) 0.65505  End
2) 0.19230  The
3) 0.03856  the
4) 0.01223  end
5) 0.00978  this

示例推文嵌入

from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
from scipy.spatial.distance import cosine
from collections import Counter

def get_embedding(text):  # naive approach for demonstration
  text = preprocess(text)
  encoded_input = tokenizer(text, return_tensors='pt')
  features = model(**encoded_input)
  features = features[0].detach().cpu().numpy() 
  return np.mean(features[0], axis=0) 


MODEL = "cardiffnlp/twitter-roberta-base-2019-90m"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModel.from_pretrained(MODEL)

query = "The book was awesome"
tweets = ["I just ordered fried chicken ?", 
          "The movie was great",
          "What time is the next game?",
          "Just finished reading 'Embeddings in NLP'"]

sims = Counter()
for tweet in tweets:
    sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
    sims[tweet] = sim

print('Most similar to: ', query)
print(f"{'-'*30}")
for idx, (tweet, sim) in enumerate(sims.most_common()):
    print("%d) %.5f %s" % (idx+1, sim, tweet))

输出:

Most similar to:  The book was awesome
------------------------------
1) 0.99078 The movie was great
2) 0.96701 Just finished reading 'Embeddings in NLP'
3) 0.96037 I just ordered fried chicken ?
4) 0.95919 What time is the next game?

示例特征提取

from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np

MODEL = "cardiffnlp/twitter-roberta-base-2019-90m"
tokenizer = AutoTokenizer.from_pretrained(MODEL)

text = "Good night ?"
text = preprocess(text)

# Pytorch
model = AutoModel.from_pretrained(MODEL)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy() 
features_mean = np.mean(features[0], axis=0) 
#features_max = np.max(features[0], axis=0)

# # Tensorflow
# model = TFAutoModel.from_pretrained(MODEL)
# encoded_input = tokenizer(text, return_tensors='tf')
# features = model(encoded_input)
# features = features[0].numpy()
# features_mean = np.mean(features[0], axis=0) 
# #features_max = np.max(features[0], axis=0)