模型:
cardiffnlp/twitter-roberta-base-emoji
这是一个基于roBERTa-base模型,训练数据包括大约5800万条推文,并通过TweetEval基准进行了表情符号预测的微调。
from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='emoji' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Looking forward to Christmas" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Looking forward to Christmas" # text = preprocess(text) # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}")
输出:
1) ? 0.5457 2) ? 0.1417 3) ? 0.0649 4) ? 0.0395 5) ❤️ 0.03 6) ? 0.028 7) ✨ 0.0263 8) ? 0.0237 9) ? 0.0177 10) ? 0.0166 11) ? 0.0143 12) ? 0.014 13) ? 0.0076 14) ? 0.0068 15) ? 0.0065 16) ? 0.004 17) ?? 0.0037 18) ? 0.0034 19) ☀ 0.0033 20) ? 0.0021