模型:
cardiffnlp/twitter-roberta-base
任务:
填充掩码预印本库:
arxiv:2010.12421这是一个在原始RoBERTa-base模型的基础上,在大约5800万条推特数据上进行训练的模型。该模型在 TweetEval benchmark (Findings of EMNLP 2020) 中进行了描述和评估。要评估这个模型或其他语言模型在推特特定数据上的表现,请参考 Tweeteval official repository 。
将用户名和链接替换为占位符:"@user"和"http"。
def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text)
from transformers import pipeline, AutoTokenizer import numpy as np MODEL = "cardiffnlp/twitter-roberta-base" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def print_candidates(): for i in range(5): token = tokenizer.decode(candidates[i]['token']) score = np.round(candidates[i]['score'], 4) print(f"{i+1}) {token} {score}") texts = [ "I am so <mask> ?", "I am so <mask> ?" ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) print_candidates()
输出:
------------------------------ I am so <mask> ? 1) happy 0.402 2) excited 0.1441 3) proud 0.143 4) grateful 0.0669 5) blessed 0.0334 ------------------------------ I am so <mask> ? 1) sad 0.2641 2) sorry 0.1605 3) tired 0.138 4) sick 0.0278 5) hungry 0.0232
from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import defaultdict tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) def get_embedding(text): text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) return features_mean MODEL = "cardiffnlp/twitter-roberta-base" query = "The book was awesome" tweets = ["I just ordered fried chicken ?", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] d = defaultdict(int) for tweet in tweets: sim = 1-cosine(get_embedding(query),get_embedding(tweet)) d[tweet] = sim print('Most similar to: ',query) print('----------------------------------------') for idx,x in enumerate(sorted(d.items(), key=lambda x:x[1], reverse=True)): print(idx+1,x[0])
输出:
Most similar to: The book was awesome ---------------------------------------- 1 The movie was great 2 Just finished reading 'Embeddings in NLP' 3 I just ordered fried chicken ? 4 What time is the next game?
from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night ?" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0)
如果您使用了这个模型,请引用 reference paper 。
@inproceedings{barbieri-etal-2020-tweeteval, title = "{T}weet{E}val: Unified Benchmark and Comparative Evaluation for Tweet Classification", author = "Barbieri, Francesco and Camacho-Collados, Jose and Espinosa Anke, Luis and Neves, Leonardo", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.findings-emnlp.148", doi = "10.18653/v1/2020.findings-emnlp.148", pages = "1644--1650" }