模型:
ccdv/lsg-bart-base-16384-mediasum
Transformers >= 4.23.1 This model relies on a custom modeling file, you need to add trust_remote_code=True See #13467
LSG ArXiv paper . Github/conversion script is available at this link .
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-16384-mediasum", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-16384-mediasum", trust_remote_code=True) text = "Replace by what you want." pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0) generated_text = pipe( text, truncation=True, max_length=64, no_repeat_ngram_size=7, num_beams=2, early_stopping=True )
This model is a fine-tuned version of ccdv/lsg-bart-base-4096-mediasum on the ccdv/mediasum roberta_prepended mediasum dataset. The model is converted to handle 16384 long sequences and fine-tuned accordingly during 1 epoch. It achieves the following results on the test set:
Length | Global tokens | Fine-tuning | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
---|---|---|---|---|---|---|---|---|---|
16384 | 64 | Full | 256 | 0 | 768 | 35.31 | 18.35 | 31.81 | 32.47 |
16384 | 1 | Full | 256 | 0 | 768 | 35.21 | 18.20 | 31.73 | 32.37 |
16384 | 64 | Global only | 256 | 0 | 768 | 35.22 | 18.08 | 31.54 | 32.21 |
16384 | 1 | None | 256 | 0 | 768 | 35.17 | 18.13 | 31.54 | 32.20 |
Reference model:
Length | Global tokens | Fine-tuning | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
---|---|---|---|---|---|---|---|---|---|
4096 | 1 | - | 256 | 0 | 768 | 35.16 | 18.13 | 31.54 | 32.20 |
The model relies on Local-Sparse-Global attention to handle long sequences:
The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). The model is warm started from ccdv/lsg-bart-base-4096-mediasum , converted to handle long sequences (encoder only) and fine tuned.
More information needed
More information needed
The following hyperparameters were used during training:
The following hyperparameters were used during generation: