Transformers >= 4.23.1 This model relies on a custom modeling file, you need to add trust_remote_code=True See #13467
LSG ArXiv paper . Github/conversion script is available at this link .
This model is adapted from BART-base for encoder-decoder tasks without additional pretraining. It uses the same number of parameters/layers and the same tokenizer.
This model can handle long sequences but faster and more efficiently than Longformer (LED) or BigBird (Pegasus) from the hub and relies on Local + Sparse + Global attention (LSG).
The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). \
Implemented in PyTorch.
The model relies on a custom modeling file, you need to add trust_remote_code=True to use it.
from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/lsg-bart-base-16384", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-16384")
You can change various parameters like :
Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix.
from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/lsg-bart-base-16384", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True )
There are 5 different sparse selection patterns. The best type is task dependent. Note that for sequences with length < 2*block_size, the type has no effect.
Seq2Seq example for summarization:
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-16384", trust_remote_code=True, pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-16384") SENTENCE = "This is a test sequence to test the model. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", padding="max_length", # Optional but recommended truncation=True # Optional but recommended ) output = model(**token_ids)
Classification example:
from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-bart-base-16384", trust_remote_code=True, pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-16384") SENTENCE = "This is a test sequence to test the model. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None)
BART
@article{DBLP:journals/corr/abs-1910-13461, author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov and Luke Zettlemoyer}, title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, journal = {CoRR}, volume = {abs/1910.13461}, year = {2019}, url = {http://arxiv.org/abs/1910.13461}, eprinttype = {arXiv}, eprint = {1910.13461}, timestamp = {Thu, 31 Oct 2019 14:02:26 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }