模型:
ccdv/lsg-bart-base-4096-multinews
Transformers >= 4.23.1 该模型依赖于自定义的建模文件,您需要添加 trust_remote_code=True 请参阅 #13467
LSG ArXiv paper 。Github/conversion 脚本可在此处找到 link 。
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-multinews", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-multinews", trust_remote_code=True) text = "Replace by what you want." pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0) generated_text = pipe( text, truncation=True, max_length=64, no_repeat_ngram_size=7, num_beams=2, early_stopping=True )
该模型是在 ccdv/lsg-bart-base-4096 数据集上微调版本的 multi_news default 。它在测试集上取得了以下结果:
Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
---|---|---|---|---|---|---|---|---|
4096 | Local | 256 | 0 | 768 | 47.10 | 18.94 | 25.22 | 43.13 |
4096 | Local | 128 | 0 | 384 | 46.73 | 18.79 | 25.13 | 42.76 |
4096 | Pooling | 128 | 4 | 644 | 46.83 | 18.87 | 25.23 | 42.86 |
4096 | Stride | 128 | 4 | 644 | 46.83 | 18.68 | 24.98 | 42.88 |
4096 | Block Stride | 128 | 4 | 644 | 46.83 | 18.72 | 25.06 | 42.88 |
4096 | Norm | 128 | 4 | 644 | 46.74 | 18.60 | 24.93 | 42.79 |
4096 | LSH | 128 | 4 | 644 | 46.74 | 18.82 | 25.19 | 42.77 |
在较小块大小(较低资源)下:
Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
---|---|---|---|---|---|---|---|---|
4096 | Local | 64 | 0 | 192 | 45.61 | 17.91 | 24.54 | 41.65 |
4096 | Local | 32 | 0 | 96 | 43.50 | 16.36 | 23.45 | 39.61 |
4096 | Pooling | 32 | 4 | 160 | 44.77 | 17.31 | 24.16 | 40.86 |
4096 | Stride | 32 | 4 | 160 | 45.29 | 17.81 | 24.45 | 41.40 |
4096 | Block Stride | 32 | 4 | 160 | 45.39 | 17.86 | 24.51 | 41.43 |
4096 | Norm | 32 | 4 | 160 | 44.65 | 17.25 | 24.09 | 40.76 |
4096 | LSH | 32 | 4 | 160 | 44.44 | 17.20 | 24.00 | 40.57 |
该模型采用局部稀疏全局注意力来处理长序列:
该模型有大约1450万个参数(6个编码器层-6个解码器层)。该模型是从BART-base进行的热启动,转换为处理长序列(仅编码器)并进行微调。
需要更多信息
需要更多信息
训练期间使用了以下超参数:
生成期间使用了以下超参数: