英文

Transformers >= 4.23.1 该模型依赖于自定义的建模文件,您需要添加 trust_remote_code=True 请参阅 #13467

LSG ArXiv paper 。Github/conversion 脚本可在此处找到 link

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-multinews", trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-multinews", trust_remote_code=True)

text = "Replace by what you want."
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0)
generated_text = pipe(
  text, 
  truncation=True, 
  max_length=64, 
  no_repeat_ngram_size=7,
  num_beams=2,
  early_stopping=True
  )

ccdv/lsg-bart-base-4096-multinews

该模型是在 ccdv/lsg-bart-base-4096 数据集上微调版本的 multi_news default 。它在测试集上取得了以下结果:

Length Sparse Type Block Size Sparsity Connexions R1 R2 RL RLsum
4096 Local 256 0 768 47.10 18.94 25.22 43.13
4096 Local 128 0 384 46.73 18.79 25.13 42.76
4096 Pooling 128 4 644 46.83 18.87 25.23 42.86
4096 Stride 128 4 644 46.83 18.68 24.98 42.88
4096 Block Stride 128 4 644 46.83 18.72 25.06 42.88
4096 Norm 128 4 644 46.74 18.60 24.93 42.79
4096 LSH 128 4 644 46.74 18.82 25.19 42.77

在较小块大小(较低资源)下:

Length Sparse Type Block Size Sparsity Connexions R1 R2 RL RLsum
4096 Local 64 0 192 45.61 17.91 24.54 41.65
4096 Local 32 0 96 43.50 16.36 23.45 39.61
4096 Pooling 32 4 160 44.77 17.31 24.16 40.86
4096 Stride 32 4 160 45.29 17.81 24.45 41.40
4096 Block Stride 32 4 160 45.39 17.86 24.51 41.43
4096 Norm 32 4 160 44.65 17.25 24.09 40.76
4096 LSH 32 4 160 44.44 17.20 24.00 40.57

模型说明

该模型采用局部稀疏全局注意力来处理长序列:

该模型有大约1450万个参数(6个编码器层-6个解码器层)。该模型是从BART-base进行的热启动,转换为处理长序列(仅编码器)并进行微调。

预期用途和限制

需要更多信息

训练和评估数据

需要更多信息

训练过程

训练超参数

训练期间使用了以下超参数:

  • learning_rate: 8e-05
  • train_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12.0

生成超参数

生成期间使用了以下超参数:

  • dataset_name: multi_news
  • dataset_config_name: default
  • eval_batch_size: 8
  • eval_samples: 5622
  • early_stopping: True
  • ignore_pad_token_for_loss: True
  • length_penalty: 2.0
  • max_length: 320
  • min_length: 32
  • num_beams: 5
  • no_repeat_ngram_size: None
  • seed: 123

框架版本

  • Transformers 4.18.0
  • Pytorch 1.10.1+cu102
  • Datasets 2.1.0
  • Tokenizers 0.11.6