模型:
ccdv/lsg-bart-base-4096-pubmed
Transformers >= 4.23.1 This model relies on a custom modeling file, you need to add trust_remote_code=True See #13467
LSG ArXiv paper . Github/conversion script is available at this link .
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-pubmed", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-pubmed", trust_remote_code=True) text = "Replace by what you want." pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0) generated_text = pipe( text, truncation=True, max_length=64, no_repeat_ngram_size=7, num_beams=2, early_stopping=True )
This model is a fine-tuned version of ccdv/lsg-bart-base-4096 on the scientific_papers pubmed dataset. It achieves the following results on the test set:
Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
---|---|---|---|---|---|---|---|---|
4096 | Local | 256 | 0 | 768 | 47.37 | 21.74 | 28.59 | 43.67 |
4096 | Local | 128 | 0 | 384 | 47.02 | 21.33 | 28.34 | 43.31 |
4096 | Pooling | 128 | 4 | 644 | 47.11 | 21.42 | 28.43 | 43.40 |
4096 | Stride | 128 | 4 | 644 | 47.16 | 21.49 | 28.38 | 43.44 |
4096 | Block Stride | 128 | 4 | 644 | 47.13 | 21.46 | 28.39 | 43.42 |
4096 | Norm | 128 | 4 | 644 | 47.09 | 21.44 | 28.40 | 43.36 |
4096 | LSH | 128 | 4 | 644 | 47.11 | 21.41 | 28.41 | 43.42 |
With smaller block size (lower ressources):
Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
---|---|---|---|---|---|---|---|---|
4096 | Local | 64 | 0 | 192 | 45.74 | 20.26 | 27.51 | 41.99 |
4096 | Local | 32 | 0 | 96 | 42.69 | 17.83 | 25.62 | 38.89 |
4096 | Pooling | 32 | 4 | 160 | 44.60 | 19.35 | 26.83 | 40.85 |
4096 | Stride | 32 | 4 | 160 | 45.52 | 20.07 | 27.39 | 41.75 |
4096 | Block Stride | 32 | 4 | 160 | 45.30 | 19.89 | 27.22 | 41.54 |
4096 | Norm | 32 | 4 | 160 | 44.30 | 19.05 | 26.57 | 40.47 |
4096 | LSH | 32 | 4 | 160 | 44.53 | 19.27 | 26.84 | 40.74 |
The model relies on Local-Sparse-Global attention to handle long sequences:
The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). The model is warm started from BART-base, converted to handle long sequences (encoder only) and fine tuned.
More information needed
More information needed
The following hyperparameters were used during training:
The following hyperparameters were used during generation:
Transformers >= 4.23.1 This model relies on a custom modeling file, you need to add trust_remote_code=True See #13467
LSG ArXiv paper . Github/conversion script is available at this link .
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-pubmed", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-pubmed", trust_remote_code=True) text = "Replace by what you want." pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0) generated_text = pipe( text, truncation=True, max_length=64, no_repeat_ngram_size=7, num_beams=2, early_stopping=True )
This model is a fine-tuned version of ccdv/lsg-bart-base-4096 on the scientific_papers pubmed dataset. It achieves the following results on the test set:
Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
---|---|---|---|---|---|---|---|---|
4096 | Local | 256 | 0 | 768 | 47.37 | 21.74 | 28.59 | 43.67 |
4096 | Local | 128 | 0 | 384 | 47.02 | 21.33 | 28.34 | 43.31 |
4096 | Pooling | 128 | 4 | 644 | 47.11 | 21.42 | 28.43 | 43.40 |
4096 | Stride | 128 | 4 | 644 | 47.16 | 21.49 | 28.38 | 43.44 |
4096 | Block Stride | 128 | 4 | 644 | 47.13 | 21.46 | 28.39 | 43.42 |
4096 | Norm | 128 | 4 | 644 | 47.09 | 21.44 | 28.40 | 43.36 |
4096 | LSH | 128 | 4 | 644 | 47.11 | 21.41 | 28.41 | 43.42 |
With smaller block size (lower ressources):
Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
---|---|---|---|---|---|---|---|---|
4096 | Local | 64 | 0 | 192 | 45.74 | 20.26 | 27.51 | 41.99 |
4096 | Local | 32 | 0 | 96 | 42.69 | 17.83 | 25.62 | 38.89 |
4096 | Pooling | 32 | 4 | 160 | 44.60 | 19.35 | 26.83 | 40.85 |
4096 | Stride | 32 | 4 | 160 | 45.52 | 20.07 | 27.39 | 41.75 |
4096 | Block Stride | 32 | 4 | 160 | 45.30 | 19.89 | 27.22 | 41.54 |
4096 | Norm | 32 | 4 | 160 | 44.30 | 19.05 | 26.57 | 40.47 |
4096 | LSH | 32 | 4 | 160 | 44.53 | 19.27 | 26.84 | 40.74 |
The model relies on Local-Sparse-Global attention to handle long sequences:
The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). The model is warm started from BART-base, converted to handle long sequences (encoder only) and fine tuned.
More information needed
More information needed
The following hyperparameters were used during training:
The following hyperparameters were used during generation: