Transformers >= 4.23.1 此模型依赖于自定义的建模文件,您需要添加trust_remote_code=True 详见 #13467
LSG ArXiv paper . Github/转换脚本可在此 link 下找到。
该模型是根据 XLM-RoBERTa-base 模型进行了适应,尚未进行额外的预训练。它使用相同数量的参数/层和相同的分词器。
该模型可以处理长序列,但比 Longformer 或 BigBird(来自 Transformers)更快且更高效,并依赖于本地 + 稀疏 + 全局注意力 (LSG)。
该模型要求序列长度为块大小的倍数。模型是“自适应的”,如果需要会自动填充序列(在配置中设置adaptive=True)。然而,建议使用分词器截断输入(截断=True),并在需要时可使用块大小的倍数进行填充(pad_to_multiple_of=...)。
支持编码器-解码器,但我尚未进行详尽测试。 使用 PyTorch 实现。
该模型依赖于自定义的建模文件,需要添加trust_remote_code=True才能使用。
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("ccdv/lsg-xlm-roberta-base-4096", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-xlm-roberta-base-4096")
您可以更改各种参数,如:
默认参数在实践中表现良好。如果内存不足,请缩小块大小,增加稀疏因子,并删除注意力得分矩阵中的丢失比例。
from transformers import AutoModel
model = AutoModel.from_pretrained("ccdv/lsg-xlm-roberta-base-4096",
trust_remote_code=True,
num_global_tokens=16,
block_size=64,
sparse_block_size=64,
attention_probs_dropout_prob=0.0
sparsity_factor=4,
sparsity_type="none",
mask_first_token=True
)
有5种不同的稀疏选择模式。最佳类型取决于任务。 需注意,对于长度小于 2*block_size 的序列,类型没有影响。
填充遮罩示例:
from transformers import FillMaskPipeline, AutoModelForMaskedLM, AutoTokenizer
model = AutoModelForMaskedLM.from_pretrained("ccdv/lsg-xlm-roberta-base-4096", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-xlm-roberta-base-4096")
SENTENCES = ["Paris is the <mask> of France."]
pipeline = FillMaskPipeline(model, tokenizer)
output = pipeline(SENTENCES, top_k=1)
output = [o[0]["sequence"] for o in output]
> ['Paris is the capital of France.']
分类示例:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-xlm-roberta-base-4096",
trust_remote_code=True,
pool_with_global=True, # pool with a global token instead of first token
)
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-xlm-roberta-base-4096")
SENTENCE = "This is a test for sequence classification. " * 300
token_ids = tokenizer(
SENTENCE,
return_tensors="pt",
#pad_to_multiple_of=... # Optional
truncation=True
)
output = model(**token_ids)
> SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None)
仅训练全局令牌和分类头部:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-xlm-roberta-base-4096",
trust_remote_code=True,
pool_with_global=True, # pool with a global token instead of first token
num_global_tokens=16
)
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-xlm-roberta-base-4096")
for name, param in model.named_parameters():
if "global_embeddings" not in name:
param.requires_grad = False
else:
param.required_grad = True
XLM-RoBERTa
@article{DBLP:journals/corr/abs-2105-00572,
author = {Naman Goyal and
Jingfei Du and
Myle Ott and
Giri Anantharaman and
Alexis Conneau},
title = {Larger-Scale Transformers for Multilingual Masked Language Modeling},
journal = {CoRR},
volume = {abs/2105.00572},
year = {2021},
url = {https://arxiv.org/abs/2105.00572},
eprinttype = {arXiv},
eprint = {2105.00572},
timestamp = {Wed, 12 May 2021 15:54:31 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-00572.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}