模型:
cjvt/sloberta-sentinews-sentence
斯洛文尼亚3类情感分类器 - 在SentiNews数据集的句子级别配置上进行了 SloBERTa 微调。
该模型用作:(1)开箱即用的句子级别情感分类器或(2)句子级别情感分类的基准。
该模型在 cjvt/sentinews 数据集的句子级别配置的随机90%/5%/5%的训练-验证-测试分割上进行微调,使用以下超参数:
max_length = 79 # 99th percentile of encoded training sequences, sequences are padded/truncated to this length batch_size = 128 optimizer = "adamw_torch" learning_rate = 2e-5 num_epochs = 10 validation_metric = "macro_f1"
可以随意检查training_args.bin以获取更多详细信息。
如果您希望直接将您的模型与此模型进行比较,您应该使用与该模型相同的分割。要做到这一点,请使用以下代码:
import json import datasets # You can find split_indices.json in the 'Files and versions' tab with open("split_indices.json", "r") as f_split: split = json.load(f_split) data = datasets.load_dataset("cjvt/sentinews", "sentence_level", split="train") train_data = data.select(split["train_indices"]) dev_data = data.select(split["dev_indices"]) test_data = data.select(split["test_indices"])
最佳验证集结果:
{ "eval_accuracy": 0.7207815275310835, "eval_f1_macro": 0.6934678744913757, "eval_f1_negative": 0.7042136003337507, "eval_f1_neutral": 0.759215853398679, "eval_f1_positive": 0.6169741697416974, "eval_loss": 0.6337869167327881, "eval_precision_negative": 0.6685148514851486, "eval_precision_neutral": 0.7752393385552655, "eval_precision_positive": 0.6314199395770392, "eval_recall_negative": 0.74394006170119, "eval_recall_neutral": 0.7438413361169103, "eval_recall_positive": 0.6031746031746031 }
测试集结果:
{ "test_loss": 0.6395984888076782, "test_accuracy": 0.7158081705150977, "test_precision_negative": 0.6570397111913358, "test_recall_negative": 0.7292965271593945, "test_f1_negative": 0.6912850812407682, "test_precision_neutral": 0.7748017998714377, "test_recall_neutral": 0.7418957734919983, "test_f1_neutral": 0.7579918247563149, "test_precision_positive": 0.6155642023346304, "test_recall_positive": 0.5969811320754717, "test_f1_positive": 0.6061302681992337, "test_f1_macro": 0.6851357247321056, }