模型:
cjvt/sloberta-sentinews-sentence
Slovenian 3-class sentiment classifier - SloBERTa fine-tuned on the sentence-level config of the SentiNews dataset.
The model is intended as: (1) an out-of-the box sentence-level sentiment classifier or (2) a sentence-level sentiment classification baseline.
The model was fine-tuned on a random 90%/5%/5% train-val-test split of the sentence_level configuration of the cjvt/sentinews dataset using the following hyperparameters:
max_length = 79 # 99th percentile of encoded training sequences, sequences are padded/truncated to this length batch_size = 128 optimizer = "adamw_torch" learning_rate = 2e-5 num_epochs = 10 validation_metric = "macro_f1"
Feel free to inspect training_args.bin for more details.
If you wish to directly compare your model to this one, you should use the same split as this model. To do so, use the following code:
import json import datasets # You can find split_indices.json in the 'Files and versions' tab with open("split_indices.json", "r") as f_split: split = json.load(f_split) data = datasets.load_dataset("cjvt/sentinews", "sentence_level", split="train") train_data = data.select(split["train_indices"]) dev_data = data.select(split["dev_indices"]) test_data = data.select(split["test_indices"])
Best validation set results:
{ "eval_accuracy": 0.7207815275310835, "eval_f1_macro": 0.6934678744913757, "eval_f1_negative": 0.7042136003337507, "eval_f1_neutral": 0.759215853398679, "eval_f1_positive": 0.6169741697416974, "eval_loss": 0.6337869167327881, "eval_precision_negative": 0.6685148514851486, "eval_precision_neutral": 0.7752393385552655, "eval_precision_positive": 0.6314199395770392, "eval_recall_negative": 0.74394006170119, "eval_recall_neutral": 0.7438413361169103, "eval_recall_positive": 0.6031746031746031 }
Test set results:
{ "test_loss": 0.6395984888076782, "test_accuracy": 0.7158081705150977, "test_precision_negative": 0.6570397111913358, "test_recall_negative": 0.7292965271593945, "test_f1_negative": 0.6912850812407682, "test_precision_neutral": 0.7748017998714377, "test_recall_neutral": 0.7418957734919983, "test_f1_neutral": 0.7579918247563149, "test_precision_positive": 0.6155642023346304, "test_recall_positive": 0.5969811320754717, "test_f1_positive": 0.6061302681992337, "test_f1_macro": 0.6851357247321056, }