模型:
clhuang/albert-news-classification
繁体中文新闻分类任务,使用ckiplab/albert-base-chinese预训练模型,数据集只有2.6万条,作为课程的范例模型。
from transformers import BertTokenizer, AlbertForSequenceClassification model_path = "clhuang/albert-news-classification" model = AlbertForSequenceClassification.from_pretrained(model_path) tokenizer = BertTokenizer.from_pretrained("bert-base-chinese") # Category index news_categories=['政治','科技','運動','證卷','產經','娛樂','生活','國際','社會','文化','兩岸'] idx2cate = { i : item for i, item in enumerate(news_categories)} # get category probability def get_category_proba( text ): max_length = 250 # prepare token sequence inputs = tokenizer([text], padding=True, truncation=True, max_length=max_length, return_tensors="pt") # perform inference outputs = model(**inputs) # get output probabilities by doing softmax probs = outputs[0].softmax(1) # executing argmax function to get the candidate label index label_index = probs.argmax(dim=1)[0].tolist() # convert tensor to int # get the label name label = idx2cate[ label_index ] # get the label probability proba = round(float(probs.tolist()[0][label_index]),2) response = {'label': label, 'proba': proba} return response get_category_proba('俄羅斯2月24日入侵烏克蘭至今不到3個月,芬蘭已準備好扭轉奉行了75年的軍事不結盟政策,申請加入北約。芬蘭總理馬林昨天表示,「希望我們下星期能與瑞典一起提出申請」。') {'label': '國際', 'proba': 0.99}