模型:
cross-encoder/nli-deberta-v3-base
此模型使用 SentenceTransformers Cross-Encoder 类进行训练。该模型基于 microsoft/deberta-v3-base 。
模型在 SNLI 和 MultiNLI 数据集上进行了训练。对于给定的句子对,它会输出三个与标签(矛盾、蕴含、中性)对应的分数。
更多评估结果,请参见 SBERT.net - Pretrained Cross-Encoder 。
可以像这样使用预训练模型:
from sentence_transformers import CrossEncoder model = CrossEncoder('cross-encoder/nli-deberta-v3-base') scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')]) #Convert scores to labels label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
您还可以直接使用 Transformers 库中的模型(而无需使用 SentenceTransformers 库):
from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-deberta-v3-base') tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-deberta-v3-base') features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] print(labels)
该模型还可以用于零样本分类:
from transformers import pipeline classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-deberta-v3-base') sent = "Apple just announced the newest iPhone X" candidate_labels = ["technology", "sports", "politics"] res = classifier(sent, candidate_labels) print(res)