英文

自然语言推理的交叉编码器

该模型使用了 SentenceTransformers Cross-Encoder 类进行训练。该模型基于 microsoft/deberta-v3-large

训练数据

该模型基于 SNLI MultiNLI 数据集进行训练。对于给定的句子对,它会输出与标签相对应的三个得分:矛盾、蕴涵、中性。

性能

  • SNLI-test 数据集上的准确率:92.20
  • MNLI mismatched 集上的准确率:90.49

有关进一步评估结果,请参阅 SBERT.net - Pretrained Cross-Encoder

用法

预训练模型可以像这样使用:

from sentence_transformers import CrossEncoder
model = CrossEncoder('cross-encoder/nli-deberta-v3-large')
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])

#Convert scores to labels
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]

与 Transformers AutoModel 的使用

您还可以直接在 Transformers 库中使用该模型(无需 SentenceTransformers 库):

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-deberta-v3-large')
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-deberta-v3-large')

features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'],  padding=True, truncation=True, return_tensors="pt")

model.eval()
with torch.no_grad():
    scores = model(**features).logits
    label_mapping = ['contradiction', 'entailment', 'neutral']
    labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
    print(labels)

零样本分类

该模型也可用于零样本分类:

from transformers import pipeline

classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-deberta-v3-large')

sent = "Apple just announced the newest iPhone X"
candidate_labels = ["technology", "sports", "politics"]
res = classifier(sent, candidate_labels)
print(res)