模型:
cross-encoder/nli-distilroberta-base
该模型使用 Cross-Encoder 类进行了训练。
该模型是使用 SNLI 和 MultiNLI 数据集进行训练的。对于给定的句子对,它将输出对应于标签的三个分数:矛盾、蕴含、中性。
有关评估结果,请参见 SBERT.net - Pretrained Cross-Encoder 。
预训练模型可按如下方式使用:
from sentence_transformers import CrossEncoder model = CrossEncoder('cross-encoder/nli-distilroberta-base') scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')]) #Convert scores to labels label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
您也可以直接使用Transformers库(不使用SentenceTransformers库)来使用该模型:
from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-distilroberta-base') tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-distilroberta-base') features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] print(labels)
该模型还可以用于零样本分类:
from transformers import pipeline classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-distilroberta-base') sent = "Apple just announced the newest iPhone X" candidate_labels = ["technology", "sports", "politics"] res = classifier(sent, candidate_labels) print(res)