模型:

cross-encoder/qnli-distilroberta-base

英文

Quora问题重复检测的交叉编码器

此模型使用 SentenceTransformers 类进行了训练。

训练数据

给定一个问题和段落,问题是否可以通过段落回答?这些模型是在 GLUE QNLI 数据集上进行训练的,该数据集将 SQuAD dataset 转化为了NLI任务。

性能

关于此模型的性能结果,请参见[SBERT.net预训练交叉编码器]( https://www.sbert.net/docs/pretrained_cross-encoders.html] )。

用法

可以按照以下方式使用预训练模型:

from sentence_transformers import CrossEncoder
model = CrossEncoder('model_name')
scores = model.predict([('Query1', 'Paragraph1'), ('Query2', 'Paragraph2')])

#e.g.
scores = model.predict([('How many people live in Berlin?', 'Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.'), ('What is the size of New York?', 'New York City is famous for the Metropolitan Museum of Art.')])

与Transformers AutoModel一起使用

您还可以直接使用Transformers库(而无需使用SentenceTransformers库)。

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model = AutoModelForSequenceClassification.from_pretrained('model_name')
tokenizer = AutoTokenizer.from_pretrained('model_name')

features = tokenizer(['How many people live in Berlin?', 'What is the size of New York?'], ['Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'],  padding=True, truncation=True, return_tensors="pt")

model.eval()
with torch.no_grad():
    scores = torch.nn.functional.sigmoid(model(**features).logits)
    print(scores)