语言模型:xlm-roberta-base 语言:多语言 下游任务:提取性问答 训练数据:SQuAD 2.0 评估数据:SQuAD 2.0开发集 - 德文MLQA - 德文XQuAD 代码:请见 example 中的 FARM 基础设施:4x Tesla v100
batch_size = 22*4 n_epochs = 2 max_seq_len=256, doc_stride=128, learning_rate=2e-5,
相应的实验日志在mlflow中: link
用 official eval script 评估SQuAD 2.0开发集。
"exact": 73.91560683904657 "f1": 77.14103746689592
在德文MLQA上评估:test-context-de-question-de.json"exact": 33.67279167589108 "f1": 44.34437105434842 "total": 4517
在德文XQuAD上评估:xquad.de.json"exact": 48.739495798319325 "f1": 62.552615701071495 "total": 1190
from transformers.pipelines import pipeline from transformers.modeling_auto import AutoModelForQuestionAnswering from transformers.tokenization_auto import AutoTokenizer model_name = "deepset/xlm-roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.tokenization import Tokenizer from farm.infer import Inferencer model_name = "deepset/xlm-roberta-base-squad2" # a) Get predictions nlp = Inferencer.load(model_name, task_type="question_answering") QA_input = [{"questions": ["Why is model conversion important?"], "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}] res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True) # b) Load model & tokenizer model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") tokenizer = Tokenizer.load(model_name)
要对规模进行问答(即许多文档而不是单个段落),也可以在 haystack 中加载模型:
reader = FARMReader(model_name_or_path="deepset/xlm-roberta-base-squad2") # or reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/xlm-roberta-base-squad2")
Branden Chan: branden.chan [at] deepset.ai Timo Möller: timo.moeller [at] deepset.ai Malte Pietsch: malte.pietsch [at] deepset.ai Tanay Soni: tanay.soni [at] deepset.ai
我们通过开源将NLP引入行业!我们的重点是行业特定语言模型和大规模问答系统。
我们的一些工作:
请联系: Twitter | LinkedIn | Discord | GitHub Discussions | Website
顺便说一句: we're hiring!