模型:
deepset/xlm-roberta-large-squad2
语言模型:xlm-roberta-large 语言:多语言 下游任务:提取式问答 训练数据:SQuAD 2.0 评估数据:SQuAD开发集 - 德语MLQA - 德语XQuAD 训练次数: MLFlow link 基础设施:4x Tesla v100
batch_size = 32 n_epochs = 3 base_LM_model = "xlm-roberta-large" max_seq_len = 256 learning_rate = 1e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64
在SQuAD 2.0英语开发集上进行评估,得分为 official eval script
"exact": 79.45759285774446, "f1": 83.79259828925511, "total": 11873, "HasAns_exact": 71.96356275303644, "HasAns_f1": 80.6460053117963, "HasAns_total": 5928, "NoAns_exact": 86.93019343986543, "NoAns_f1": 86.93019343986543, "NoAns_total": 5945
在德语上评估得分为 MLQA: test-context-de-question-de.json
"exact": 49.34691166703564, "f1": 66.15582561674236, "total": 4517,
在德语上评估得分为 XQuAD: xquad.de.json
"exact": 61.51260504201681, "f1": 78.80206098332569, "total": 1190,
要进行大规模问答(即多个文档而不是单个段落),您也可以在 haystack 中加载该模型:
reader = FARMReader(model_name_or_path="deepset/xlm-roberta-large-squad2") # or reader = TransformersReader(model="deepset/xlm-roberta-large-squad2",tokenizer="deepset/xlm-roberta-large-squad2")
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/xlm-roberta-large-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
Branden Chan:branden.chan@deepset.ai Timo Möller:timo.moeller@deepset.ai Malte Pietsch:malte.pietsch@deepset.ai Tanay Soni:tanay.soni@deepset.ai
deepset 是开源NLP框架 Haystack 的公司,该框架旨在帮助您构建使用问答、摘要、排名等的生产就绪的NLP系统。
我们的其他工作包括:
有关Haystack的更多信息,请访问我们的 GitHub 存储库和 Documentation 。
我们还拥有一个 Discord community open to everyone!
Twitter | LinkedIn | Discord | GitHub Discussions | Website
顺便说一句: we're hiring!