from transformers import AutoModel model = AutoModel.from_pretrained("deepsynthbody/deepfake_ecg", trust_remote_code=True) out = model(num_samples=5)
如果您想从头开始训练模型,请参考我们的开发存储库 Pulse2Pulse。
生成器函数可以生成具有8导联值(第一到第八列的导联名称为:'I','II','V1','V2', 'V3','V4','V5','V6')的DeepFake心电图,时长为10秒(每个导联5000个值)。可以使用以下方程将这些8导联格式转换为12导联格式。
lead III value = (lead II value) - (lead I value) lead aVR value = -0.5*(lead I value + lead II value) lead aVL value = lead I value - 0.5 * lead II value lead aVF value = lead II value - 0.5 * lead I value
- In this repository, there are two DeepFake datasets: 1. 150k dataset - Randomly generated 150k DeepFakeECGs 2. Filtered all normals dataset - Only "Normal" ECGs filtered using the MUSE analysis report
欢迎提交拉取请求。对于重大更改,请先打开一个问题来讨论您想要更改的内容。
请确保适当更新测试。
@article{thambawita2021deepfake, title={DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine}, author={Thambawita, Vajira and Isaksen, Jonas L and Hicks, Steven A and Ghouse, Jonas and Ahlberg, Gustav and Linneberg, Allan and Grarup, Niels and Ellervik, Christina and Olesen, Morten Salling and Hansen, Torben and others}, journal={Scientific reports}, volume={11}, number={1}, pages={1--8}, year={2021}, publisher={Nature Publishing Group} }
请联系:vajira@simula.no,michael@simula.no