英文

deepfake-ecg

Paper

GitHub

Pre-generated ECGs (150k)

生成来自Hugging Face的合成心电图

from transformers import AutoModel

model = AutoModel.from_pretrained("deepsynthbody/deepfake_ecg", trust_remote_code=True)

out = model(num_samples=5)

Pulse2Pulse - 开发存储库

如果您想从头开始训练模型,请参考我们的开发存储库 Pulse2Pulse。

用法

生成器函数可以生成具有8导联值(第一到第八列的导联名称为:'I','II','V1','V2', 'V3','V4','V5','V6')的DeepFake心电图,时长为10秒(每个导联5000个值)。可以使用以下方程将这些8导联格式转换为12导联格式。

lead III value = (lead II value) - (lead I value)
lead aVR value = -0.5*(lead I value + lead II value)
lead aVL value = lead I value - 0.5 * lead II value
lead aVF value = lead II value - 0.5 * lead I value

预生成的 DeepFake 心电图及其对应的 MUSE 报告在这里: https://osf.io/6hved/ 或 ( https://huggingface.co/datasets/deepsynthbody/deepfake_ecg )

- In this repository, there are two DeepFake datasets:
    1. 150k dataset - Randomly generated 150k DeepFakeECGs
    2. Filtered all normals dataset - Only "Normal" ECGs filtered using the MUSE analysis report

真实心电图与 DeepFake 心电图对比(从左到右):

一个示例 DeepFake 心电图:

贡献

欢迎提交拉取请求。对于重大更改,请先打开一个问题来讨论您想要更改的内容。

请确保适当更新测试。

引用:

@article{thambawita2021deepfake,
  title={DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine},
  author={Thambawita, Vajira and Isaksen, Jonas L and Hicks, Steven A and Ghouse, Jonas and Ahlberg, Gustav and Linneberg, Allan and Grarup, Niels and Ellervik, Christina and Olesen, Morten Salling and Hansen, Torben and others},
  journal={Scientific reports},
  volume={11},
  number={1},
  pages={1--8},
  year={2021},
  publisher={Nature Publishing Group}
}	

许可证

MIT

了解更多详情:

请联系:vajira@simula.no,michael@simula.no