模型:
facebook/convnext-base-384
ConvNeXT模型在ImageNet-1k数据集上训练,分辨率为384x384。该模型由Liu等人在论文 A ConvNet for the 2020s 中提出,并于 this repository 首次发布。
免责声明:ConvNeXT团队并未为此模型编写模型指南,因此本模型指南由Hugging Face团队编写。
ConvNeXT是一种纯卷积模型(ConvNet),受到Vision Transformers设计的启发,并声称在性能上超越了它们。作者从ResNet开始,并通过借鉴Swin Transformer的设计使其设计现代化。
您可以使用原始模型进行图像分类。查看 model hub ,以寻找在您感兴趣的任务上进行优化的版本。
这是如何使用该模型将COCO 2017数据集中的图像分类为1,000个ImageNet类别之一的示例:
from transformers import ConvNextImageProcessor, ConvNextForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] processor = ConvNextImageProcessor.from_pretrained("facebook/convnext-base-384") model = ConvNextForImageClassification.from_pretrained("facebook/convnext-base-384") inputs = processor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]),
如需更多代码示例,请参阅 documentation 。
@article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }