英文

ConvNeXT(大型模型)

ConvNeXT模型在ImageNet-22k上进行了预训练,并在224x224分辨率的ImageNet-1k上进行了微调。它在Liu等人的论文 A ConvNet for the 2020s 中首次发布。

声明:发布ConvNeXT团队没有为该模型编写模型卡片,因此这个模型卡片是由Hugging Face团队编写的。

模型描述

ConvNeXT是一个纯卷积模型(ConvNet),受到Vision Transformers设计的启发,声称超越它们。作者从ResNet开始,通过借鉴Swin Transformer的设计进行“现代化”。

预期用途和限制

您可以使用原始模型进行图像分类。查看 model hub 以查找您感兴趣的任务上的微调版本。

使用方法

以下是如何使用此模型将COCO 2017数据集的图像分类为1,000个ImageNet类别之一的示例:

from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification
import torch
from datasets import load_dataset

dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]

feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-large-224-22k-1k")
model = ConvNextForImageClassification.from_pretrained("facebook/convnext-large-224-22k-1k")

inputs = feature_extractor(image, return_tensors="pt")

with torch.no_grad():
    logits = model(**inputs).logits

# model predicts one of the 1k ImageNet classes
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label]),

更多代码示例,请参阅 documentation

BibTeX条目和引用信息

@article{DBLP:journals/corr/abs-2201-03545,
  author    = {Zhuang Liu and
               Hanzi Mao and
               Chao{-}Yuan Wu and
               Christoph Feichtenhofer and
               Trevor Darrell and
               Saining Xie},
  title     = {A ConvNet for the 2020s},
  journal   = {CoRR},
  volume    = {abs/2201.03545},
  year      = {2022},
  url       = {https://arxiv.org/abs/2201.03545},
  eprinttype = {arXiv},
  eprint    = {2201.03545},
  timestamp = {Thu, 20 Jan 2022 14:21:35 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}