模型:
facebook/convnextv2-tiny-1k-224
使用FCMAE框架在ImageNet-1K数据集上进行预训练并进行微调的ConvNeXt V2模型,分辨率为224x224。该模型由Woo等人在论文《 ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders 》中提出,并于《 this repository 》首次发布。
声明:ConvNeXT V2发布团队未为该模型撰写模型卡片,因此该模型卡片由Hugging Face团队编写。
ConvNeXt V2是一个纯卷积模型(ConvNet),引入了全卷积遮罩自编码器框架(FCMAE)和一个新的全局响应归一化(GRN)层到ConvNeXt中。ConvNeXt V2显著提高了纯ConvNet在各种识别基准上的性能。
你可以使用原始模型进行图像分类。查看《 model hub 》以寻找你感兴趣任务的微调版本。
以下是如何使用此模型将COCO 2017数据集的图像分类为1,000个ImageNet类别的示例:
from transformers import AutoImageProcessor, ConvNextV2ForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] preprocessor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224") inputs = preprocessor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]),
更多代码示例,请参阅《 documentation 》。
@article{DBLP:journals/corr/abs-2301-00808, author = {Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie}, title = {ConvNeXt {V2:} Co-designing and Scaling ConvNets with Masked Autoencoders}, journal = {CoRR}, volume = {abs/2301.00808}, year = {2023}, url = {https://doi.org/10.48550/arXiv.2301.00808}, doi = {10.48550/arXiv.2301.00808}, eprinttype = {arXiv}, eprint = {2301.00808}, timestamp = {Tue, 10 Jan 2023 15:10:12 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2301-00808.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }