模型:

facebook/fastspeech2-en-200_speaker-cv4

英文

fastspeech2-en-200_speaker-cv4

FastSpeech 2 文本转语音模型,来自fairseq S^2 ( paper / code ):

  • 英语
  • 200男性/女性音色(使用小部件时随机选择音色)
  • Common Voice v4 上训练

使用方法

from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd


models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
    "facebook/fastspeech2-en-200_speaker-cv4",
    arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)

text = "Hello, this is a test run."

sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)

ipd.Audio(wav, rate=rate)

另请参见 fairseq S^2 example

引用

@inproceedings{wang-etal-2021-fairseq,
    title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
    author = "Wang, Changhan  and
      Hsu, Wei-Ning  and
      Adi, Yossi  and
      Polyak, Adam  and
      Lee, Ann  and
      Chen, Peng-Jen  and
      Gu, Jiatao  and
      Pino, Juan",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-demo.17",
    doi = "10.18653/v1/2021.emnlp-demo.17",
    pages = "143--152",
}