基于Cityscapes语义分割(基于IN21k,Swin骨干)训练的Mask2Former模型。该模型在论文 Masked-attention Mask Transformer for Universal Image Segmentation 中介绍,并于 this repository 首次发布。
免责声明:发布Mask2Former的团队未为该模型编写模型卡,因此该模型卡是由Hugging Face团队编写的。
Mask2Former通过预测一组掩码和相应的标签来同时解决实例分割、语义分割和全景分割,从而将这三个任务都视为实例分割。Mask2Former通过以下方式在性能和效率上优于先前的SOTA模型 MaskFormer :(i) 用更先进的多尺度可变形注意力Transformer替换像素解码器,(ii) 采用带有Masked Attention的Transformer解码器,以提高性能而不引入额外的计算量,以及(iii) 通过仅计算子采样点上的损失而不是整个掩码来提高训练效率。
您可以使用此特定的检查点进行全景分割。查看 model hub 以寻找您感兴趣的其他任务上的微调版本。
以下是如何使用此模型的方法:
import requests import torch from PIL import Image from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation # load Mask2Former fine-tuned on Cityscapes semantic segmentation processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-base-IN21k-cityscapes-semantic") model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-IN21k-cityscapes-semantic") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # model predicts class_queries_logits of shape `(batch_size, num_queries)` # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` class_queries_logits = outputs.class_queries_logits masks_queries_logits = outputs.masks_queries_logits # you can pass them to processor for postprocessing predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
有关更多代码示例,请参阅 documentation 。