模型:
facebook/maskformer-swin-large-ade
在ADE20k语义分割上训练的MaskFormer模型(大型版本,使用Swin骨干)。 它在论文 Per-Pixel Classification is Not All You Need for Semantic Segmentation 中介绍,并于 this repository 首次发布。
免责声明:发布MaskFormer的团队未为该模型编写模型卡片,因此此模型卡片由Hugging Face团队编写。
MaskFormer使用相同的范式来处理实例、语义和全景分割:通过预测一组掩码和相应的标签。因此,将这3个任务都视为实例分割。
您可以使用此特定检查点进行语义分割。请参阅 model hub ,以查找您感兴趣的其他微调版本的任务。
以下是使用此模型的方法:
from transformers import MaskFormerImageProcessor, MaskFormerForInstanceSegmentation from PIL import Image import requests url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-large-ade") inputs = processor(images=image, return_tensors="pt") model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-large-ade") outputs = model(**inputs) # model predicts class_queries_logits of shape `(batch_size, num_queries)` # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` class_queries_logits = outputs.class_queries_logits masks_queries_logits = outputs.masks_queries_logits # you can pass them to processor for postprocessing # we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs) predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
有关更多代码示例,请参阅 documentation 。