模型:
facebook/maskformer-swin-small-coco
MaskFormer模型基于COCO全景分割进行训练(小型版本,Swin骨干结构)。它在 Per-Pixel Classification is Not All You Need for Semantic Segmentation 论文中被提出,并于 this repository 首次发布。
免责声明:发布MaskFormer的团队未针对该模型撰写模型卡片,因此此模型卡片由Hugging Face团队编写。
MaskFormer使用相同的范式来处理实例、语义和全景分割:通过预测一组掩膜和相应的标签来处理这3个任务。因此,所有这3个任务都被视为实例分割。
您可以使用这个特定的检查点进行语义分割。查看 model hub 以寻找您感兴趣的其他微调版本的任务。
以下是如何使用此模型的方法:
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation from PIL import Image import requests # load MaskFormer fine-tuned on COCO panoptic segmentation feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-small-coco") model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # model predicts class_queries_logits of shape `(batch_size, num_queries)` # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` class_queries_logits = outputs.class_queries_logits masks_queries_logits = outputs.masks_queries_logits # you can pass them to feature_extractor for postprocessing result = feature_extractor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs) predicted_panoptic_map = result["segmentation"]
更多代码示例,请参阅 documentation 。