模型:
facebook/maskformer-swin-tiny-ade
MaskFormer模型是在ADE20k语义分割数据集上训练得到的(小型版本,使用Swin骨干网络)。该模型在论文 Per-Pixel Classification is Not All You Need for Semantic Segmentation 中进行了介绍,并在 this repository 中首次发布。
免责声明:发布MaskFormer模型的团队并未为该模型编写模型卡片,因此本模型卡片是由Hugging Face团队编写的。
MaskFormer模型使用相同的范例处理实例分割、语义分割和全景分割,通过预测一组掩码和相应的标签来解决这三个任务。因此,这三个任务都被视为实例分割。
您可以使用此特定检查点进行语义分割。如果您想寻找其他任务上的微调版本,请参阅 model hub 。
以下是如何使用此模型的方法:
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation from PIL import Image import requests url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-ade") inputs = feature_extractor(images=image, return_tensors="pt") model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-ade") outputs = model(**inputs) # model predicts class_queries_logits of shape `(batch_size, num_queries)` # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` class_queries_logits = outputs.class_queries_logits masks_queries_logits = outputs.masks_queries_logits # you can pass them to feature_extractor for postprocessing # we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs) predicted_semantic_map = feature_extractor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
有关更多代码示例,请参阅 documentation 。