模型:
facebook/mgenre-wiki
The mGENRE (多语言生成式实体检索)系统是以pytorch实现的,如 Multilingual Autoregressive Entity Linking 所示。
简而言之,mGENRE使用序列到序列的方法进行实体检索(例如链接),基于细调的 mBART 体系结构。GENRE通过使用约束束搜索生成唯一实体名称,取决于输入文本。该模型首先在 facebookresearch/GENRE 库中发布,使用fairseq(通过类似于 this 的转换脚本获取的转换器模型)。
该模型在维基百科的105种语言上进行了训练。
如果您使用了此存储库中的代码,请考虑引用我们的作品。
@article{decao2020multilingual, author = {De Cao, Nicola and Wu, Ledell and Popat, Kashyap and Artetxe, Mikel and Goyal, Naman and Plekhanov, Mikhail and Zettlemoyer, Luke and Cancedda, Nicola and Riedel, Sebastian and Petroni, Fabio}, title = "{Multilingual Autoregressive Entity Linking}", journal = {Transactions of the Association for Computational Linguistics}, volume = {10}, pages = {274-290}, year = {2022}, month = {03}, issn = {2307-387X}, doi = {10.1162/tacl_a_00460}, url = {https://doi.org/10.1162/tacl\_a\_00460}, eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00460/2004070/tacl\_a\_00460.pdf}, }
这是一个用于维基百科页面消歧的生成示例:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # OPTIONAL: load the prefix tree (trie), you need to additionally download # https://huggingface.co/facebook/mgenre-wiki/blob/main/trie.py and # https://huggingface.co/facebook/mgenre-wiki/blob/main/titles_lang_all105_trie_with_redirect.pkl # that is fast but memory inefficient prefix tree (trie) -- it is implemented with nested python `dict` # NOTE: loading this map may take up to 10 minutes and occupy a lot of RAM! # import pickle # from trie import Trie # with open("titles_lang_all105_marisa_trie_with_redirect.pkl", "rb") as f: # trie = Trie.load_from_dict(pickle.load(f)) # or a memory efficient but a bit slower prefix tree (trie) -- it is implemented with `marisa_trie` from # https://huggingface.co/facebook/mgenre-wiki/blob/main/titles_lang_all105_marisa_trie_with_redirect.pkl # from genre.trie import MarisaTrie # with open("titles_lang_all105_marisa_trie_with_redirect.pkl", "rb") as f: # trie = pickle.load(f) tokenizer = AutoTokenizer.from_pretrained("facebook/mgenre-wiki") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mgenre-wiki").eval() sentences = ["[START] Einstein [END] era un fisico tedesco."] # Italian for "[START] Einstein [END] was a German physicist." outputs = model.generate( **tokenizer(sentences, return_tensors="pt"), num_beams=5, num_return_sequences=5, # OPTIONAL: use constrained beam search # prefix_allowed_tokens_fn=lambda batch_id, sent: trie.get(sent.tolist()), ) tokenizer.batch_decode(outputs, skip_special_tokens=True)
输出以下前5个预测结果(使用约束束搜索):
['Albert Einstein >> it', 'Albert Einstein (disambiguation) >> en', 'Alfred Einstein >> it', 'Alberto Einstein >> it', 'Einstein >> it']