模型:
facebook/s2t-wav2vec2-large-en-de
s2t-wav2vec2-large-en-de是一个专为端到端语音翻译(ST)训练的语音到文本Transformer模型。S2T2模型在某某论文中提出,并在某某时正式发布。
S2T2是一个基于Transformer的序列到序列(语音编码器-解码器)模型,旨在进行端到端的自动语音识别(ASR)和语音翻译(ST)。它使用预训练的某某作为编码器和基于Transformer的解码器。该模型使用标准的自回归交叉熵损失进行训练,并自动逐步生成翻译。
该模型可以用于将英语语音转换为德语文本的端到端翻译。请查看某某寻找其他S2T2检查点。
由于这是一个标准的序列到序列Transformer模型,您可以使用generate方法通过将语音特征传递给模型来生成转录。
您可以通过ASR管道直接使用模型
from datasets import load_dataset
from transformers import pipeline
librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
asr = pipeline("automatic-speech-recognition", model="facebook/s2t-wav2vec2-large-en-de", feature_extractor="facebook/s2t-wav2vec2-large-en-de")
translation_de = asr(librispeech_en[0]["file"])
或按照以下步骤逐步使用:
import torch
from transformers import Speech2Text2Processor, SpeechEncoderDecoder
from datasets import load_dataset
import soundfile as sf
model = SpeechEncoderDecoder.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
ds = ds.map(map_to_array)
inputs = processor(ds["speech"][0], sampling_rate=16_000, return_tensors="pt")
generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"])
transcription = processor.batch_decode(generated_ids)
en-de的CoVoST-V2测试结果(BLEU分数):26.5
获取更多信息,请参阅某某,特别是表2的第10行。
@article{DBLP:journals/corr/abs-2104-06678,
author = {Changhan Wang and
Anne Wu and
Juan Miguel Pino and
Alexei Baevski and
Michael Auli and
Alexis Conneau},
title = {Large-Scale Self- and Semi-Supervised Learning for Speech Translation},
journal = {CoRR},
volume = {abs/2104.06678},
year = {2021},
url = {https://arxiv.org/abs/2104.06678},
archivePrefix = {arXiv},
eprint = {2104.06678},
timestamp = {Thu, 12 Aug 2021 15:37:06 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2104-06678.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}