模型:
facebook/timesformer-base-finetuned-k600
TimeSformer模型在 Kinetics-600 数据集上进行了预训练。该模型由Tong等人在 TimeSformer: Is Space-Time Attention All You Need for Video Understanding? 的论文中提出,并于 this repository 首次发布。
免责声明:发布TimeSformer的团队未为该模型撰写模型卡片,因此此模型卡片是由 fcakyon 撰写的。
您可以使用原始模型对视频进行分类,其中包含600个可能的Kinetics-600标签。
以下是使用此模型对视频进行分类的方法:
from transformers import AutoImageProcessor, TimesformerForVideoClassification
import numpy as np
import torch
video = list(np.random.randn(8, 3, 224, 224))
processor = AutoImageProcessor.from_pretrained("facebook/timesformer-base-finetuned-k600")
model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k600")
inputs = processor(images=video, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
更多代码示例,请参考 documentation 。
@inproceedings{bertasius2021space,
title={Is Space-Time Attention All You Need for Video Understanding?},
author={Bertasius, Gedas and Wang, Heng and Torresani, Lorenzo},
booktitle={International Conference on Machine Learning},
pages={813--824},
year={2021},
organization={PMLR}
}