模型:
facebook/timesformer-base-finetuned-ssv2
TimeSformer模型在 Something Something v2 数据集上进行了预训练。它是由Tong等人在 this repository 年的论文中提出的,并于 this repository 年首次发布。
免责声明:发布TimeSformer的团队没有为该模型编写模型卡片,因此该模型卡片是由 fcakyon 编写的。
您可以使用原始模型对视频进行分类,分为174个可能的Something Something v2标签之一。
以下是使用此模型对视频进行分类的方法:
from transformers import AutoImageProcessor, TimesformerForVideoClassification import numpy as np import torch video = list(np.random.randn(8, 3, 224, 224)) processor = AutoImageProcessor.from_pretrained("facebook/timesformer-base-finetuned-ssv2") model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-ssv2") inputs = processor(images=video, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx])
有关更多代码示例,请参阅 documentation 。
@inproceedings{bertasius2021space, title={Is Space-Time Attention All You Need for Video Understanding?}, author={Bertasius, Gedas and Wang, Heng and Torresani, Lorenzo}, booktitle={International Conference on Machine Learning}, pages={813--824}, year={2021}, organization={PMLR} }