模型:
facebook/timesformer-hr-finetuned-k600
TimeSformer模型是在 Kinetics-600 上进行预训练的。它是由Tong等人在 TimeSformer: Is Space-Time Attention All You Need for Video Understanding? 的论文中介绍,并于 this repository 首次发布的。
免责声明:发布TimeSformer的团队未为此模型编写模型卡,因此此模型卡由 fcakyon 编写。
您可以使用原始模型将视频分类为600种可能的Kinetics-600标签之一。
这是如何使用此模型对视频进行分类的示例:
from transformers import AutoImageProcessor, TimesformerForVideoClassification import numpy as np import torch video = list(np.random.randn(16, 3, 448, 448)) processor = AutoImageProcessor.from_pretrained("facebook/timesformer-hr-finetuned-k600") model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-hr-finetuned-k600") inputs = processor(images=video, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx])
如需更多代码示例,请参阅 documentation 。
@inproceedings{bertasius2021space, title={Is Space-Time Attention All You Need for Video Understanding?}, author={Bertasius, Gedas and Wang, Heng and Torresani, Lorenzo}, booktitle={International Conference on Machine Learning}, pages={813--824}, year={2021}, organization={PMLR} }