模型:
facebook/timesformer-hr-finetuned-ssv2
TimeSformer模型在 Something Something v2 上进行了预训练。它在Tong等人的论文 TimeSformer: Is Space-Time Attention All You Need for Video Understanding? 中首次提出,并在 this repository 中首次发布。
免责声明:发布TimeSformer的团队没有为该模型撰写模型卡片,因此此模型卡片由 fcakyon 撰写。
您可以使用原始模型对视频进行分类,分为174个可能的Something Something v2标签之一。
这是如何使用这个模型对视频进行分类的方法:
from transformers import AutoImageProcessor, TimesformerForVideoClassification import numpy as np import torch video = list(np.random.randn(16, 3, 448, 448)) processor = AutoImageProcessor.from_pretrained("facebook/timesformer-hr-finetuned-ssv2") model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-hr-finetuned-ssv2") inputs = feature_extractor(images=video, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx])
更多代码示例,请参阅 documentation 。
@inproceedings{bertasius2021space, title={Is Space-Time Attention All You Need for Video Understanding?}, author={Bertasius, Gedas and Wang, Heng and Torresani, Lorenzo}, booktitle={International Conference on Machine Learning}, pages={813--824}, year={2021}, organization={PMLR} }