模型:
facebook/wav2vec2-conformer-rel-pos-large-960h-ft
Wav2Vec2-Conformer使用相对位置嵌入,在16kHz采样的语音音频上进行预训练和微调,训练数据为Librispeech的960小时语音。当使用该模型时,请确保输入的语音也是以16KHz进行采样的。
文献: fairseq S2T: Fast Speech-to-Text Modeling with fairseq
作者:Changhan Wang,Yun Tang,Xutai Ma,Anne Wu,Sravya Popuri,Dmytro Okhonko,Juan Pino
Wav2Vec2-Conformer的结果可以在 official paper 的表3和表4中找到。
可以在 https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20 中找到原始模型。
要转录音频文件,可以使用该模型作为独立的声学模型,如下所示:
from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft") model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids)
这段代码演示了如何在LibriSpeech的“clean”和“other”测试数据上评估facebook/wav2vec2-conformer-rel-pos-large-960h-ft。
from datasets import load_dataset from transformers import Wav2Vec2ConformerForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") def map_to_pred(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") attention_mask = inputs.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"]))
结果(WER):
"clean" | "other" |
---|---|
1.85 | 3.82 |