模型:
flair/chunk-english-fast
这是随Flair一起提供的用于英语的快速短语分块模型。
F1得分:96.22(CoNLL-2000)
预测4个标签:
tag | meaning |
---|---|
ADJP | adjectival |
ADVP | adverbial |
CONJP | conjunction |
INTJ | interjection |
LST | list marker |
NP | noun phrase |
PP | prepositional |
PRT | particle |
SBAR | subordinate clause |
VP | verb phrase |
基于 Flair embeddings 和LSTM-CRF。
需要 Flair (pip install flair)
from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/chunk-english-fast") # make example sentence sentence = Sentence("The happy man has been eating at the diner") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('np'): print(entity)
这将产生以下输出:
Span [1,2,3]: "The happy man" [− Labels: NP (0.9958)] Span [4,5,6]: "has been eating" [− Labels: VP (0.8759)] Span [7]: "at" [− Labels: PP (1.0)] Span [8,9]: "the diner" [− Labels: NP (0.9991)]
因此,在句子"The happy man has been eating at the diner"中,"The happy man"和"the diner"被标记为名词短语(NP),"has been eating"被标记为动词短语(VP)。
使用以下Flair脚本来训练此模型:
from flair.data import Corpus from flair.datasets import CONLL_2000 from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = CONLL_2000() # 2. what tag do we want to predict? tag_type = 'np' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # contextual string embeddings, forward FlairEmbeddings('news-forward-fast'), # contextual string embeddings, backward FlairEmbeddings('news-backward-fast'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/chunk-english-fast', train_with_dev=True, max_epochs=150)
在使用此模型时,请引用以下论文。
@inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} }
Flair的问题跟踪器在此处 here 。