英文

openai/whisper-large-v2

此模型是基于数据集None上的 openai/whisper-large-v2 进行微调的版本。它在评估集上取得以下结果:

  • 损失: 0.4041
  • WER: 15.7710
  • CER: 7.6691

模型描述

需要更多信息

预期用途和限制

需要更多信息

训练和评估数据

训练数据:

评估数据:

训练过程

训练超参数

训练过程中使用了以下超参数:

  • learning_rate: 1e-07
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

训练结果

Training Loss Epoch Step Validation Loss Wer Cer
0.3983 0.1 500 0.5338 19.5876 10.6391
0.2277 1.08 1000 0.4134 16.5826 8.2668
0.172 2.05 1500 0.3968 16.3084 7.9787
0.1823 3.03 2000 0.3956 16.1768 7.8159
0.1445 4.0 2500 0.3955 16.0342 7.7438
0.147 4.1 3000 0.3965 15.8807 7.7145
0.1292 5.08 3500 0.4000 15.8587 7.7065
0.1187 6.05 4000 0.4029 15.7491 7.6398
0.1368 7.03 4500 0.4041 15.7600 7.6558
0.1231 8.0 5000 0.4041 15.7710 7.6691

框架版本

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2