模型:
google/t5_xxl_true_nli_mixture
这是一个基于T5-XXL的NLI模型,用于预测二进制标签('1' - 蕴含,'0' - 非蕴含)。
它与 TRUE paper (Honovich et al, 2022) 中描述的NLI模型类似进行训练,但是使用以下数据集而不是ANLI:
模型的输入格式为:"premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT"。
如果您将此模型用于研究出版物,请引用下面的TRUE论文(使用下面的bibtex条目)以及上述数据集的论文。
@inproceedings{honovich-etal-2022-true-evaluating, title = "{TRUE}: Re-evaluating Factual Consistency Evaluation", author = "Honovich, Or and Aharoni, Roee and Herzig, Jonathan and Taitelbaum, Hagai and Kukliansy, Doron and Cohen, Vered and Scialom, Thomas and Szpektor, Idan and Hassidim, Avinatan and Matias, Yossi", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.287", doi = "10.18653/v1/2022.naacl-main.287", pages = "3905--3920", }