英文

这是一个基于T5-XXL的NLI模型,用于预测二进制标签('1' - 蕴含,'0' - 非蕴含)。

它与 TRUE paper (Honovich et al, 2022) 中描述的NLI模型类似进行训练,但是使用以下数据集而不是ANLI:

模型的输入格式为:"premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT"。

如果您将此模型用于研究出版物,请引用下面的TRUE论文(使用下面的bibtex条目)以及上述数据集的论文。

@inproceedings{honovich-etal-2022-true-evaluating,
    title = "{TRUE}: Re-evaluating Factual Consistency Evaluation",
    author = "Honovich, Or  and
      Aharoni, Roee  and
      Herzig, Jonathan  and
      Taitelbaum, Hagai  and
      Kukliansy, Doron  and
      Cohen, Vered  and
      Scialom, Thomas  and
      Szpektor, Idan  and
      Hassidim, Avinatan  and
      Matias, Yossi",
    booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jul,
    year = "2022",
    address = "Seattle, United States",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.naacl-main.287",
    doi = "10.18653/v1/2022.naacl-main.287",
    pages = "3905--3920",
}