模型:
grammatek/icelandic-ner-bert
此模型在冰岛语的MIM-GOLD-NER数据集上进行了微调。 该语料库于2018-2020年在 Reykjavik University 开发,涵盖了以下八种实体类型:
Records | B-Date | B-Location | B-Miscellaneous | B-Money | B-Organization | B-Percent | B-Person | B-Time | I-Date | I-Location | I-Miscellaneous | I-Money | I-Organization | I-Percent | I-Person | I-Time | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Train | 39988 | 3409 | 5980 | 4351 | 729 | 5754 | 502 | 11719 | 868 | 2112 | 516 | 3036 | 770 | 2382 | 50 | 5478 | 790 |
Valid | 7063 | 570 | 1034 | 787 | 100 | 1078 | 103 | 2106 | 147 | 409 | 76 | 560 | 104 | 458 | 7 | 998 | 136 |
Test | 8299 | 779 | 1319 | 935 | 153 | 1315 | 108 | 2247 | 172 | 483 | 104 | 660 | 167 | 617 | 10 | 1089 | 158 |
下表总结了模型整体和每个类别的得分。
entity | precision | recall | f1-score | support |
---|---|---|---|---|
Date | 0.969466 | 0.978177 | 0.973802 | 779.0 |
Location | 0.955201 | 0.953753 | 0.954476 | 1319.0 |
Miscellaneous | 0.867033 | 0.843850 | 0.855285 | 935.0 |
Money | 0.979730 | 0.947712 | 0.963455 | 153.0 |
Organization | 0.893939 | 0.897338 | 0.895636 | 1315.0 |
Percent | 1.000000 | 1.000000 | 1.000000 | 108.0 |
Person | 0.963028 | 0.973743 | 0.968356 | 2247.0 |
Time | 0.976879 | 0.982558 | 0.979710 | 172.0 |
micro avg | 0.938158 | 0.938958 | 0.938558 | 7028.0 |
macro avg | 0.950659 | 0.947141 | 0.948840 | 7028.0 |
weighted avg | 0.937845 | 0.938958 | 0.938363 | 7028.0 |
您可以使用Transformers管道进行命名实体识别。
pip install transformers
from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification # for pytorch from transformers import TFAutoModelForTokenClassification # for tensorflow from transformers import pipeline model_name_or_path = "grammatek/icelandic-ner-bert" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForTokenClassification.from_pretrained(model_name_or_path) # Pytorch # model = TFAutoModelForTokenClassification.from_pretrained(model_name_or_path) # Tensorflow nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Kristin manneskja getur ekki lagt frásagnir af Jesú Kristi á hilluna vegna þess að hún sé búin að lesa þær ." ner_results = nlp(example) print(ner_results)
在 IcelandicNER Issues 存储库上发布Github问题。