模型:
h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b
该模型是使用 H2O LLM Studio 进行训练的。
要在启用了GPU的机器上使用transformers库中的模型,请确保已安装transformers、accelerate和torch库。
pip install transformers==4.30.2 pip install accelerate==0.19.0 pip install torch==2.0.0
import torch from transformers import pipeline generate_text = pipeline( model="h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b", torch_dtype="auto", trust_remote_code=True, use_fast=False, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=1024, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"])
在预处理步骤之后,您可以打印示例提示以查看它如何被馈送给分词器:
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
<|prompt|>Why is drinking water so healthy?</s><|answer|>
或者,您可以下载h2oai_pipeline.py,将其存储在笔记本旁边,并根据加载的模型和分词器构建流水线。如果该模型和分词器在transformers包中得到完全支持,这将允许您将trust_remote_code设置为False。
import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b", use_fast=False, padding_side="left", trust_remote_code=False, ) model = AutoModelForCausalLM.from_pretrained( "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=False, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=1024, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"])
您还可以自行从加载的模型和分词器构建流水线,并考虑预处理步骤:
from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=False, trust_remote_code=False, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=False, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( **inputs, min_new_tokens=2, max_new_tokens=1024, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer)
LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) )
该模型是使用H2O LLM Studio和cfg.yaml中的配置进行训练的。访问 H2O LLM Studio 了解如何训练自己的大型语言模型。
在使用本仓库提供的大型语言模型之前,请仔细阅读此免责声明。您使用该模型即表示您同意以下条款和条件。
通过使用本仓库提供的大型语言模型,您同意接受并遵守本免责声明中概述的条款和条件。如果您不同意本免责声明的任何部分,您应避免使用模型和由其生成的任何内容。