模型:
h2oai/h2ogpt-oasst1-512-20b
H2O.ai的 h2ogpt-oasst1-512-20b 是一个拥有200亿参数、用于商业用途的指令遵循大语言模型。
若要在支持GPU的机器上使用 transformers 库中的模型,请确保已安装 transformers 和 accelerate 库。
pip install transformers==4.28.1 pip install accelerate==0.18.0
import torch from transformers import pipeline generate_text = pipeline(model="h2oai/h2ogpt-oasst1-512-20b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"])
或者,如果您不想使用 trust_remote_code=True ,您可以下载 instruct_pipeline.py ,将其存储在与笔记本相同的位置,并从加载的模型和分词器构建自己的pipeline:
import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oasst1-512-20b", padding_side="left") model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oasst1-512-20b", torch_dtype=torch.bfloat16, device_map="auto") generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"])
GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50432, 6144) (layers): ModuleList( (0-43): 44 x GPTNeoXLayer( (input_layernorm): LayerNorm((6144,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((6144,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=6144, out_features=18432, bias=True) (dense): Linear(in_features=6144, out_features=6144, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=6144, out_features=24576, bias=True) (dense_4h_to_h): Linear(in_features=24576, out_features=6144, bias=True) (act): FastGELUActivation() ) ) ) (final_layer_norm): LayerNorm((6144,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=6144, out_features=50432, bias=False) )
GPTNeoXConfig { "_name_or_path": "h2oai/h2ogpt-oasst1-512-20b", "architectures": [ "GPTNeoXForCausalLM" ], "attention_probs_dropout_prob": 0, "bos_token_id": 0, "custom_pipeline": { "text-generation": { "impl": "h2oai_pipeline.H2OTextGenerationPipeline", "pt": "AutoModelForCausalLM" } }, "custom_pipelines": { "text-generation": { "impl": "h2oai_pipeline.H2OTextGenerationPipeline", "pt": "AutoModelForCausalLM" } }, "eos_token_id": 0, "hidden_act": "gelu_fast", "hidden_dropout_prob": 0, "hidden_size": 6144, "initializer_range": 0.02, "intermediate_size": 24576, "layer_norm_eps": 1e-05, "max_position_embeddings": 2048, "model_type": "gpt_neox", "num_attention_heads": 64, "num_hidden_layers": 44, "rotary_emb_base": 10000, "rotary_pct": 0.25, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.28.1", "use_cache": true, "use_parallel_residual": true, "vocab_size": 50432 }
使用 EleutherAI lm-evaluation-harness 进行模型验证。
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
hellaswag | 0 | acc | 0.5419 | ± | 0.0050 |
acc_norm | 0.7259 | ± | 0.0045 | ||
boolq | 1 | acc | 0.7125 | ± | 0.0079 |
piqa | 0 | acc | 0.7742 | ± | 0.0098 |
acc_norm | 0.7775 | ± | 0.0097 | ||
openbookqa | 0 | acc | 0.2800 | ± | 0.0201 |
acc_norm | 0.4000 | ± | 0.0219 | ||
arc_challenge | 0 | acc | 0.3993 | ± | 0.0143 |
acc_norm | 0.4420 | ± | 0.0145 | ||
winogrande | 0 | acc | 0.6614 | ± | 0.0133 |
arc_easy | 0 | acc | 0.7327 | ± | 0.0091 |
acc_norm | 0.6894 | ± | 0.0095 |
在使用本存储库中提供的大语言模型之前,请仔细阅读此免责声明。您使用该模型即表示您同意以下条款和条件。
通过使用本存储库提供的大语言模型,您同意接受并遵守本免责声明中概述的条款和条件。如果您不同意本免责声明的任何部分,您应避免使用该模型和由它生成的任何内容。