模型:
h2oai/h2ogpt-oasst1-falcon-40b
H2O.ai 的 h2ogpt-oasst1-falcon-40b 是一个拥有 400 亿参数、经过商业许可的指令跟随大型语言模型。
要在带有 GPU 的机器上使用 transformers 库与该模型,请确保您已安装以下库。
pip install transformers==4.29.2 pip install accelerate==0.19.0 pip install torch==2.0.1 pip install einops==0.6.1
import torch from transformers import pipeline, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oasst1-falcon-40b", padding_side="left") generate_text = pipeline(model="h2oai/h2ogpt-oasst1-falcon-40b", tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", prompt_type="human_bot") res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"])
或者,如果您想不使用 trust_remote_code=True,您可以下载 instruct_pipeline.py ,将其存储在与您的笔记本旁边,并根据加载的模型和分词器构建自己的流程:
import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oasst1-falcon-40b", padding_side="left") model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oasst1-falcon-40b", torch_dtype=torch.bfloat16, device_map="auto") generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer, prompt_type="human_bot") res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"])
RWForCausalLM( (transformer): RWModel( (word_embeddings): Embedding(65024, 8192) (h): ModuleList( (0-59): 60 x DecoderLayer( (ln_attn): LayerNorm((8192,), eps=1e-05, elementwise_affine=True) (ln_mlp): LayerNorm((8192,), eps=1e-05, elementwise_affine=True) (self_attention): Attention( (maybe_rotary): RotaryEmbedding() (query_key_value): Linear(in_features=8192, out_features=9216, bias=False) (dense): Linear(in_features=8192, out_features=8192, bias=False) (attention_dropout): Dropout(p=0.0, inplace=False) ) (mlp): MLP( (dense_h_to_4h): Linear(in_features=8192, out_features=32768, bias=False) (act): GELU(approximate='none') (dense_4h_to_h): Linear(in_features=32768, out_features=8192, bias=False) ) ) ) (ln_f): LayerNorm((8192,), eps=1e-05, elementwise_affine=True) ) (lm_head): Linear(in_features=8192, out_features=65024, bias=False) )
RWConfig { "_name_or_path": "h2oai/h2ogpt-oasst1-falcon-40b", "alibi": false, "apply_residual_connection_post_layernorm": false, "architectures": [ "RWForCausalLM" ], "attention_dropout": 0.0, "auto_map": { "AutoConfig": "tiiuae/falcon-40b--configuration_RW.RWConfig", "AutoModel": "tiiuae/falcon-40b--modelling_RW.RWModel", "AutoModelForCausalLM": "tiiuae/falcon-40b--modelling_RW.RWForCausalLM", "AutoModelForQuestionAnswering": "tiiuae/falcon-40b--modelling_RW.RWForQuestionAnswering", "AutoModelForSequenceClassification": "tiiuae/falcon-40b--modelling_RW.RWForSequenceClassification", "AutoModelForTokenClassification": "tiiuae/falcon-40b--modelling_RW.RWForTokenClassification" }, "bias": false, "bos_token_id": 11, "custom_pipelines": { "text-generation": { "impl": "h2oai_pipeline.H2OTextGenerationPipeline", "pt": "AutoModelForCausalLM" } }, "eos_token_id": 11, "hidden_dropout": 0.0, "hidden_size": 8192, "initializer_range": 0.02, "layer_norm_epsilon": 1e-05, "model_type": "RefinedWeb", "n_head": 128, "n_head_kv": 8, "n_layer": 60, "parallel_attn": true, "torch_dtype": "float16", "transformers_version": "4.30.0.dev0", "use_cache": true, "vocab_size": 65024 }
使用 EleutherAI lm-evaluation-harness 进行模型验证结果。
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 0.5196 | ± | 0.0146 |
acc_norm | 0.5461 | ± | 0.0145 | ||
arc_easy | 0 | acc | 0.8190 | ± | 0.0079 |
acc_norm | 0.7799 | ± | 0.0085 | ||
boolq | 1 | acc | 0.8514 | ± | 0.0062 |
hellaswag | 0 | acc | 0.6485 | ± | 0.0048 |
acc_norm | 0.8314 | ± | 0.0037 | ||
openbookqa | 0 | acc | 0.3860 | ± | 0.0218 |
acc_norm | 0.4880 | ± | 0.0224 | ||
piqa | 0 | acc | 0.8194 | ± | 0.0090 |
acc_norm | 0.8335 | ± | 0.0087 | ||
winogrande | 0 | acc | 0.7751 | ± | 0.0117 |
在使用此存储库中提供的大型语言模型之前,请仔细阅读此免责声明。您使用该模型即表示您同意以下条款和条件。
通过使用本存储库提供的大型语言模型,您同意接受并遵守本免责声明中概述的条款和条件。如果您不同意本免责声明的任何部分,您应避免使用该模型和由其生成的任何内容。