模型:
hackathon-pln-es/bertin-roberta-base-finetuning-esnli
这是一个在一系列西班牙语NLI任务上进行训练的模型,参数为 sentence-transformers 。它将句子和段落映射到一个768维的稠密向量空间,并可用于聚类或语义搜索等任务。
基于 this paper 中的连体网络方法。
您可以在此模型的演示中查看。
您可以在 here 中找到我们的其他模型,即paraphrase-spanish-distilroberta,以及其演示 here 。
如果您已经安装了 sentence-transformers ,则可以轻松使用该模型:
pip install -U sentence-transformers
然后您可以像这样使用模型:
from sentence_transformers import SentenceTransformer sentences = ["Este es un ejemplo", "Cada oración es transformada"] model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') embeddings = model.encode(sentences) print(embeddings)
如果没有 sentence-transformers ,则可以按照以下步骤使用该模型:首先,您将输入传递给变换器模型,然后必须在上下文词嵌入之上应用正确的汇集操作。
from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') model = AutoModel.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
我们的模型在使用 SemEval-2015 Task 进行 Spanish 的语义文本相似性任务上进行了评估。
12317321 | BERTIN STS (this model) | Relative improvement | |
---|---|---|---|
cosine_pearson | 0.609803 | 0.683188 | +12.03 |
cosine_spearman | 0.528776 | 0.615916 | +16.48 |
euclidean_pearson | 0.590613 | 0.672601 | +13.88 |
euclidean_spearman | 0.526529 | 0.611539 | +16.15 |
manhattan_pearson | 0.589108 | 0.672040 | +14.08 |
manhattan_spearman | 0.525910 | 0.610517 | +16.09 |
dot_pearson | 0.544078 | 0.600517 | +10.37 |
dot_spearman | 0.460427 | 0.521260 | +13.21 |
该模型采用以下参数进行训练:
数据集
我们使用了一系列自然语言推理数据集作为训练数据:
使用的整个数据集可在 here 中找到。
这里我们留下了我们用来增加训练数据量的技巧:
for row in reader: if row['language'] == 'es': sent1 = row['sentence1'].strip() sent2 = row['sentence2'].strip() add_to_samples(sent1, sent2, row['gold_label']) add_to_samples(sent2, sent1, row['gold_label']) #Also add the opposite
DataLoader:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader参数长度为1818:
{'batch_size': 64}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss参数:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()方法的参数:
{ "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 909, "weight_decay": 0.01 }
SentenceTransformer( (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) )