模型:
hakonmh/topic-xdistil-uncased
Topic-xDistil是基于 xtremedistil-l12-h384-uncased 进行微调的模型,用于对由 Chat GPT 3.5 注释的新闻标题的主题进行分类。它与 Sentiment-xDistil 一起构建,作为过滤财经新闻标题和分类情感的工具。用于训练这两个模型和构建数据集的代码可在 here 找到。
注:
输出标签要么是经济学,要么是其他。此模型适用于英语。以下是测试集上两个模型的性能指标:
Model | Test Set Size | Accuracy | F1 Score |
---|---|---|---|
topic-xdistil-uncased | 32 799 | 94.44 % | 92.59 % |
sentiment-xdistil-uncased | 17 527 | 94.59 % | 93.44 % |
训练数据包括约600k条新闻标题和推文,并由 Chat GPT 3.5 进行注释,表明其 outperform crowd-workers for text annotation tasks 。
Chat GPT提示定义了句子标签如下:
""" [...] - Economic headlines generally cover topics such as financial markets, \ business, financial assets, trade, employment, GDP, inflation, or fiscal \ and monetary policy. - Non-economic headlines might include sports, entertainment, politics, \ science, weather, health, or other unrelated news events. [...] """
以下是一个简单示例:
from transformers import AutoTokenizer, AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("hakonmh/topic-xdistil-uncased") tokenizer = AutoTokenizer.from_pretrained("hakonmh/topic-xdistil-uncased") SENTENCE = "Global Growth Surges as New Technologies Drive Innovation and Productivity!" inputs = tokenizer(SENTENCE, return_tensors="pt") output = model(**inputs).logits predicted_label = model.config.id2label[output.argmax(-1).item()] print(predicted_label)
Economics
或者,与Sentiment-xDistil一起使用:
from transformers import pipeline topic_classifier = pipeline("sentiment-analysis", model="hakonmh/topic-xdistil-uncased", tokenizer="hakonmh/topic-xdistil-uncased") sentiment_classifier = pipeline("sentiment-analysis", model="hakonmh/sentiment-xdistil-uncased", tokenizer="hakonmh/sentiment-xdistil-uncased") SENTENCE = "Global Growth Surges as New Technologies Drive Innovation and Productivity!" print(topic_classifier(SENTENCE)) print(sentiment_classifier(SENTENCE))
[{'label': 'Economics', 'score': 0.9970171451568604}] [{'label': 'Positive', 'score': 0.9997037053108215}]