模型:
hfl/chinese-electra-180g-base-discriminator
Google和斯坦福大学发布了一个名为ELECTRA的新的预训练模型,与BERT和其变体相比,它具有更紧凑的模型大小和相对竞争力的性能。为了进一步推动中文预训练模型的研究,哈尔滨工业大学和科大讯飞研究院联合实验室(HFL)基于ELECTRA的官方代码发布了中文ELECTRA模型。与BERT和其变体相比,ELECTRA-Small仅使用1/10的参数就能在几个自然语言处理任务上达到相似甚至更高的分数。
本项目基于ELECTRA的官方代码: https://github.com/google-research/electra
你可能还会感兴趣:
更多HFL的资源: https://github.com/ymcui/HFL-Anthology
如果您认为我们的资源或论文对您有用,请在您的论文中考虑包含以下引用。
@inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", }